Nonparametric Estimation of Finite-mixture Models

نویسندگان

  • stéphane bonhomme
  • koen jochmans
  • jean-marc robin
چکیده

The aim of this paper is to provide simple nonparametric methods to estimate finite-mixture models from data with repeated measurements. Three measurements suffice for the mixtures to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the number of mixture components, the mixing proportions, as well as of the mixture distributions and various functionals thereof. These estimators are found to perform well in a series of Monte Carlo exercises. We apply our techniques to document heterogeneity in log annual earnings using PSID data spanning the period 1969–1998.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Nonparametric Probability Density Function Estimation with Finite Gaussian Mixture Models

Flexible and reliable probability density estimation is fundamental in unsupervised learning and classification. Finite Gaussian mixture models are commonly used to serve this purpose. However, they fail to estimate unknown probability density functions when used for nonparametric probability density estimation, as severe numerical difficulties may occur when the number of components increases....

متن کامل

Nonparametric Identifiability of Finite Mixtures

Finite mixture models are useful in applied econometrics. They can be used to model unobserved heterogeneity, which plays major roles in labor economics, industrial organization and other fields. Mixtures are also convenient in dealing with contaminated sampling models and models with multiple equilibria. Most of the currently available estimation methods for mixtures are entirely parametric; o...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Bayesian Nonparametric Models

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...

متن کامل

Nonparametric Mixture of Regression Models.

Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is ...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012